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Abstract—In heavy rain video, rain streak and rain accumulation are the most common causes of degradation. They occlude

background information and can significantly impair the visibility. Most existing methods rely heavily on the synthetic training data, and

thus raise the domain gap problem that prevents the trained models from performing adequately in real testing cases. Unlike these

methods, we introduce a self-learning method to remove both rain streaks and rain accumulation without using any ground-truth clean

images in training our model, which consequently can alleviate the domain gap issue. The main idea is based on the assumptions that

(1) adjacent clean frames can be aligned or warped from one frame to another frame, (2) rain streaks are distributed randomly in the

temporal domain, (3) the rain streak/accumulation related variables/priors can be inferred reliably from the information within the

images/sequences. Based on these assumptions, we construct an augmented Self-Learned Deraining Network (SLDNet+) to remove

both rain streaks and rain accumulation by utilizing temporal correlation, consistency, and rain-related priors. For the temporal

correlation, our SLDNet+ takes rain degraded adjacent frames as its input, aligns them, and learns to predict the clean version of the

current frame. For the temporal consistency, a new loss is designed to build a robust mapping between the predicted clean frame and

non-rain regions from the adjacent rain frames. For the rain-streak-related prior, the rain streak removal network is optimized jointly with

motion estimation and rain region detection; while for the rain-accumulation-related prior, a novel non-local video rain accumulation

removal method is developed to estimate the accumulation-lines from the whole input video and to offer better color constancy and

temporal smoothness. Extensive experiments show the effectiveness of our approach, which provides superior results compared with

the existing state of the art methods both quantitatively and qualitatively. The source code will be made publicly available at: https://

github.com/flyywh/CVPR-2020-Self-Rain-Removal-Journal.

Index Terms—Multi-frame image, video rain removal, physical recovery guidance, adversarial learning

Ç

1 INTRODUCTION

RAIN frequently leads to visual degradation in images and
videos. The most common form of degradation caused by

rain is rain streaks, which can partially obstruct a background
scene, alter the image’s appearance, and distort the scene.
Besides rain streaks, rain produces a veiling effect, also known

as rain accumulation, which is visually similar to fog/haze.
Rain accumulation is observable in heavy rain, as dense distant
falling raindrops cannot be seen individually, and a consider-
able amount ofwater particles are present in the atmosphere.

Based on rain spatial appearances, a few methods
(e.g., [26], [31], [41], [46]) focus on decomposing rain streaks
from the clean background. Sparse representation [41],
frequency domain representation [31], Gaussian mixture
models [36], and deep networks [19], [61], provide
some constraints and features to separate the rain streak
layer from the background layer. Existing video-based
approaches (e.g., [2], [4], [5], [11], [15], [21], [23], [24], [72])
utilize temporal redundancies and contexts in addition to
spatial correlations. The earliest methods [21], [23], [24]
exploit the physical and photometric properties of rain
streaks, such as their directional and chromatic properties.
To remove rain streaks from rain frames, later methods [10],
[33], [38], [39], [59] employ the temporal dynamics of vid-
eos, such as the consistency of background layers and the
randomness of rain positions in the temporal domain. A
few deep learning methods have also been introduced
(e.g., [10], [33], [38], [39], [59]). Convolutional neural net-
works (CNN) and other deep learning models, such as
recurrent neural networks [38], [39] and convolutional
sparse coding [33], are used to remove rain streaks. Explicit
temporal correlation [10], scale variance of rain streaks [33],
and motion contexts [38], [39] are a few examples of the
developed priors.
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Generally, the CNN-based methods outperform existing
non-deep-learning methods [62]. However, these fully
supervised methods significantly rely on synthetic paired
videos (rain/rain-free videos). Since, to obtain real paired
videos is intractable, particularly when there are moving
objects or background in the scenes. Unfortunately, there
are significant domain gaps between synthetic and real rain
images. As rain appearances are diverse in scales, shapes,
orientations, or even forms (both rain streaks and rain accu-
mulation), a synthetic dataset cannot include all various
types of rains properly and completely. Moreover, a syn-
thetic dataset can only provide limited background images,
which makes a network tend to fail in reconstructing tex-
tures and details of clean images in unseen backgrounds.
Consequently, when the training relies heavily on synthetic
data, these gaps can degenerate the performance. Moreover,
existing video-deraining methods do not handle rain accu-
mulation, which is commonly present in heavy rain.

In this paper, we develop a self-learning method that does
not require clean ground-truth videos during the training pro-
cess. Hence, our method does not use any synthetic rain data
in training our model. We jointly model the intrinsic con-
straints of natural video and the priors of rain streaks in a novel
augmented Self-Learned Deraining Network (SLDNet+) by
considering the mechanism of learning from noisy data (i.e.,
adjacent rainy frames). Our SLDNet+ also exploits the tempo-
ral correlation and consistency in our output frames.

In SLDNet+, we also include a rain-related prior, i.e.,
jointly optimized motion estimation and rain region detec-
tion. Using robust motion estimation, we can align the input
rain frames, and make the constraint (the consistency among
adjacent frames) more effective. The jointly optimized rain
region detection also guides our SLDNet+ to only focus on
manipulating rain regions while suppressing the effect of
rain streaks in the noisy labels. To make SLDNet+ learn from
the noisy labels more robustly, we design a constraint in a
form of a reweighted L1 loss that focuses more on the sparse
differences, i.e. rain streaks, instead of scattered errors caused
by inter-framemisalignment. Subsequently, we augment our
model by shuffling rain input frames to obtain an enriched
model that preserves the details and adapts to more diverse
rain streaks in real scenarios. To remove the rain accumula-
tion (or the rain veiling effect), we build a new non-local
video rain accumulation removal model to estimate the accu-
mulation-lines from the whole input frames, and offer better
color constancy and temporal smoothnesswithout using syn-
thetic data.

In summary, our contributions are as follows.

� We propose a self-learning video rain removal
method relying only on input rain video during both
training and testing stages. To the best of our knowl-
edge, it is the first time in the deraining literature
such an effort has been made. With both temporal
correlation and consistency, the proposed deep net-
work is successful to learn from noisy labels, i.e.
aligned adjacent rainy frames.

� We incorporate priors of rain videos, i.e. rain location
and background motion information to suppress the
influence of rain streaks in the adjacent frames, and
to guide the model to only focus on manipulating

the rain regions. These priors/constraints can possi-
bly inspire further exploration in self-learning video
deraining.

� To make our framework learn from noisy labels, we
further develop a more robust training constraint in
the form of reweighted L1 loss. The loss leads to
sparse differences, and therefore pays more attention
to rain streaks instead of the scattered errors caused
by the inter-frame misalignment.

� We also propose a new non-local video rain accumu-
lation removal method that estimates the accumula-
tion-lines from the whole input frames with better
color constancy and temporal smoothness, without
using synthetic data.

Extensive experiments demonstrate the effectiveness of
our approach in quantitative and qualitative evaluations
and the rationality of our design in various ablation studies.

Thiswork is an extension of our paper, SLDNet, published
in CVPR’2020 [63]. Unlike the conference version, our new
contents are as follows: 1) We introduce a reweighted L1 loss
as a training constraint, which makes the model learning
more robust to the noisy labels, i.e. aligned adjacent rain
frames. 2) With the new loss and constraint, we revisit our
model design systematically. We found the one-stage frame-
work provides better results than our previous two-stage
framework [63]. Furthermore, with the one-stage framework,
we carefully tune the hyper-parameters related to the rain
mask. With the newly designed architecture, more robust
loss, better hyper-parameters, our new method achieves
3.47 dB and 0.0210 gains in PSNR and SSIM, respectively,
with only half the parameters of our previous conference ver-
sion for deraining model [63] on NTURain [10], which even
outperforms the recent semi-supervised methods [67] using
both synthetic paired and real data in the training phase.
3) Our previousmethod [63] handles only rain streaks. In this
work, we handle both rain streaks and rain accumulation. A
nonlocal-based video accumulation removal method is
developed to significantly improve the visibility of our result
when accumulation exists. 4) We performmore experiments,
design analysis, and ablation studies to demonstrate the
advantages of our SLDNet+ for video deraining, and show
the effectiveness of ourmethod over existingmethods.

The rest of our paper is organized as follows. Section 2
conducts a comprehensive literature review. Section 3
presents our targeted rain synthesis model as well as the con-
straints and motivations that help rain removal. Section 4
proposes our self-learned deraining network SLDNet+ in
detail. Section 5 develops a non-local rain accumulation
removal method from videos to significantly improve visibil-
ity. In Section 6, experimental configurations and results are
presented. The concluding remarks are given in Section 7.

2 RELATED WORK

2.1 Single Image Rain Removal

The additive composite rain model considers a rain image
as the composition of a clean background layer and a rain
streak layer. The added rain streaks lead to visual quality
degradation of the original image. The earlier methods
adopt the optimization framework injected with rain and
background-related priors for single-image rain removal,
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e.g. frequency separation jointly with sparse coding [31],
discriminative sparse coding [41], convolutional sparse cod-
ing [69], bi-layer optimization [75], Gaussian mixture
model [36] and directional group sparse model [12]. How-
ever, due to the limited learning capacity of these hand-
designed priors/constraints, the optimization-based meth-
ods cannot produce satisfying visual results, especially
when heavy rain is presented.

With the development of deep learning, many deep net-
work-based approaches have been proposed with signifi-
cantly superior results. Fu et al. [19] introduced a three-layer
convolutional neural network for rain removal. Yang et al.
[61] injected the binary mask of the detected rain streaks to
guide the learning of a multi-branch ResNet. Zhang et al.
[70] persuaded the network to learn and perceive the rain
density information and adopted a multi-path densely con-
nected network for rain removal. Li et al. [35] and Ren et al.
[43] performed rain streak removal progressively via the
recurrent mechanism, and the information is shared and
connected among different stages with the recurrent units.
Some works [28], [50], [51], [64], [65], [68] made full use of
the multi-scale redundancy to further improve the derain-
ing performance. In [54], Wang et al. built a spatial attentive
network to remove rain streaks from local to global. In [13],
Deng et al. designed a two-stage context aggregation net-
work to effectively remove rain and well restore details
simultaneously. In [52], a novel deep network that is inter-
pretable from the optimization view is introduced by inte-
grating convolutional sparse coding and deep learning.
In [7], Chen and Li introduced the feedback mechanism and
created a new error detection and feature compensation
method to address model errors that lead to uncertainty
and degraded embedding quality. In [20], Fu et al. utilized
two graphs for global relational modeling and reasoning to
facilitate single image deraining. In [53], Wang et al. made
efforts in removing rain streaks by exploring a more effi-
cient way to synthesize rainy images to augment the train-
ing data. In [8], transformers are introduced for a series of
low-level vision tasks and also offer impressive deraining
results. Although more advanced network architectures
lead to more powerful capacities of separating rain/back-
ground signals from their mixture, these methods have two
limitations: 1) they heavily rely on the synthetic data, which
inevitably has a domain gap with the real one, the trained
models might not adapt the real rain streaks; 2) they ignore
the rain accumulation, which is quite common especially
when there is heavy rain.

To address the first issue, semi-supervised learning [37],
[56], [66], adversarial learning [71], [74], self-supervised
learning [60], neural reorganization [58], and continual learn-
ing [73] are introduced to embed the prior knowledge of real
rain images to improve the generalization performance of the
rain removal performance. There are also several works that
focus on removing rain accumulation [25], [34], [61]. In our
work, we focus on video deraining, and aim to address the
generalization problem and accumulation removal in videos.
Different from single-image rain removal methods, the addi-
tional temporal redundancy in videos provides the effective
prior and constraint for better generalization while it is more
challenging to deal with accumulation in videos as temporal
inconsistency is easily incurred.

2.2 Video Rain Removal

Compared with single-image rain removal, video rain streak
removal is capable of utilizing temporal correlation and
dynamics to detect and remove rains. Garg and Nayar pro-
pose the seminal work of video rain modeling [23] and rain
streak removal methods [21], [22], [24]. Later approaches dig
deep to see the intrinsic priors rain streak and normal back-
ground signals, i.e. the shape, size, and orientation of rain
streaks [4], [5], chromatic and temporal characteristic of
rain [40], [72], Fourier domain feature [2], phase congruency
features [45], directional prior of rain streaks [30], spatio-tem-
poral redundancy of patch groups [11], Bayes rain detec-
tor [48], [49], Gaussian mixture model [9], detection and
refinement in two stages based on SVM [32], matrix decom-
position [44], patch-basedmixtures of Gaussian [57].

Recently, deep-learning based methods arise, with signif-
icant improvements in signal manipulation capacities and
their flexibility in injecting priors and constraints. In [33], a
multiscale convolutional sparse coding is adopted to
remove rain streaks with various scales. Chen et al. [10]
firstly segmented superpixels from rain frames. Then, they
estimated rain-free superpixels by applying the consistency
constraint. After that, a CNN is further utilized to compen-
sate for lost details and add background textures in the final
results. In [38], a recurrent neural network is designed to
seamlessly integrate rain degradation classification, rain
removal and background detail reconstruction in a unified
framework. In [39], Liu et al. built a hybrid rain model for
modeling both rain streaks and occlusions. Then, a deep
dynamic routing residue recurrent network is constructed
with the motion segmentation context information. In [59],
Yang et al. developed a two-stage recurrent network incor-
porated with dual-level flow regularization to estimate the
related physics variables for deraining restoration by invert-
ing the rain synthesis model. In [67], Yue et al. proposed a
new semi-supervised video deraining method and adopted
a dynamical rain generator to fit the rain layer to better
depict the intrinsic characteristics of the rain.

Previous works are either model-driven, constructed
with hand-crafted features/constraints, or learning-based
ones, relying on synthetic paired data and ground truth
clean frames. In our work, we make the exploration of the
possible architectures and priors with only self-supervision
and develop a trainable video deraining network not rely-
ing on synthesized paired data.

3 RAIN MODEL AND SELF-LEARNING
CONSTRAINTS

3.1 Rain Model

The common rain model considers a rain image as a linear
combination of rain streaks and background:

I ¼ BþR; (1)

where B is the layer without rain streaks, and R is the rain
streak layer. I is the captured image with rain streaks.

In the real world, however, rain appears in the form of
not only individual streaks but also the accumulation of
rain water drops and particles. In a distant scene, individual
rain streaks are not observable. These rain streaks of various
shapes and directions overlap with each other mixed up
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with water drops and particles, forming the appearance of
rain accumulation, which can be modeled using the Kosch-
mieder model [1], [42], [47]. Therefore, our rain model con-
sidering both rain streaks and accumulation is expressed as:

I ¼ a BþRð Þ þ 1� að ÞA; (2)

¼ aBþR0 þ 1� að ÞA; (3)

where a is the atmospheric transmission, measuring how
much background information can go through the accumu-
lation. R0 is the rain streak in the rainy image with rain accu-
mulation. A is the global atmospheric light.

For video, with an added temporal indicator t, a video
rain synthesis model can be expressed as:

It ¼ atBt þR0
t þ 1� atð ÞAt; t ¼ 1; 2; . . .; N; (4)

where t and N denote the current time-step and the total
number of video frames, respectively. The rain streak Rt is
assumed to be independent and identically distributed ran-
dom samples. At is a global variable that changes little with
different t and at is continuous along the temporal
dimension.

In our method, to estimate Bt based on It, we first esti-
mate It �R0

t with a self-learning deraining network (Sec. 4).
After that, a non-local video accumulation removal method
(Sec. 5) is utilized to further infer Bt based on It �R0

t.

3.2 Temporal Cyclic Consistency for Self-Learned
Rain Streak Removal

We discuss the constraints we use in our framework in the
following paragraphs.

Temporal Correlation. Assuming adjacent background
frames are highly correlated and thus can be aligned or
warped from one to another, and rain streaks are randomly
distributed along the temporal dimension, an ideal deraining
method should be able to extract the background information from
the adjacent frames, while removing out the rain streaks.This
implies that if adjacent frames are all well aligned, we can
change their temporal orders (by swapping one frame with
another frame), our method should be able to remove rain-
streaks and predict a rain-streaks free frame. With this in
mind, we can augment our network by replacing the current
central frames with one of its adjacent frames randomly in
the training stage. In this way, more rain streak combina-
tions are presented in the input, and the network’s capacity
to handle more diverse rain patterns can be improved.

Temporal Consistency. As rain-free background layers
make a smooth and continuous transition in the temporal
domain, aligned adjacent background layers have only
small differences. On the contrary, even though good
motion prediction and alignment are attained, due to the
random presence of rain streaks, the well aligned rain layers
will still have large differences. Hence, if the network is con-
strained to produce temporally consistent outputs after alignment,
it will benefit rain streak removal.Unfortunately, when there
are large movements, the alignment might not be accurate,
and there might be significant differences between frames.
Thus, the temporal consistency constraint might fail in this
situation. As a result, we need to use motion estimation as a
part of our optimization objective in our method.

Rain-Related Information. We aim to inject useful informa-
tion to guide the rain streak removal process in addition to
the aforementioned constraints:

� We incorporate the rain-dependent features, namely
the rain mask, as a part of the loss functions. This
helps our model deal with rain layers in a region-
adaptive manner, i.e. only performing rain streak
removal in rain regions of the current rain frame,
while solely introducing non-rain regions of adjacent
frames to form the guidance for deraining.

� Optical flow, is easily impaired by rain streaks, since
it normally assumes to be extracted from clean
frames. Fortunately, rain removal and optical flow
can help each other, if one of them can be improved
during the process. For this reason, integrating opti-
cal flow estimation in our overall optimization func-
tion will benefit rain streak removal.

Sparse and Robust Estimation. Since we do not have the
paired data in the training, the training losses are created
based on the temporal correlation and consistency by rely-
ing on the aligned adjacent rain frames. These losses include
two kinds of errors. First, the predicted frame might include
the rain streak signal. This kind of error will be distributed
sparsely but sharply. Second, the predicted frame might
have inaccurate background contents, which causes the pre-
dicted background contents to be misaligned. This kind of
error is likely to be dense but have small values. As the com-
monly used L2 norm can only lead to non-sparse errors, the
results inevitably suffer from impaired backgrounds or
remaining rain-streaks. In our work, we pursue a sparser
estimation of the estimated errors. When the errors become
sparser, the temporally misaligned errors of backgrounds
will have insignificant effects.

4 SELF-LEARNING RAIN STREAK REMOVAL

Fig. 1 shows the architecture of our Self-Learned Deraining
Network (SLDNet+). Our warping operation (Fig. 1a)
employs optical flow [14] to obtain motion information,
enabling us to align the input frames. The optical flow is
optimized jointly with the rain streak removal module. Rain
reMoval Network Network (RMNet) (Fig. 1b) takes as input
the current rain frame and the adjacent rain frames. It out-
puts the predicted rain-free frames based on the inter-frame
consistency loss. The loss functions (Fig. 1c) are employed
with the rain mask to suppress the impact of rain streaks.
The mask guides the network to pay attention to non-rain
regions, making the learning process more robust. In other
words, our SLDNet+ estimates optical flow, warps multiple
rainy frames for performing rain removal, and imposes the
temporal consistency as losses.

4.1 Optical Flow Estimation and Optimization

We estimate optical flow and utilize it to align the adjacent
input rain frames to the central frame. We introduce Gð�Þ to
represent the optical flow estimation process:

Ci!j ¼ GðIi; IjÞ; (5)

where Ci!j represents the flow from the i-th frame to the
j-th frame. Since, we do not have the clean frame, the optical
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flow is estimated from the rain frames. Subsequently, we
warp the i-th frame to the j-th frame:

eIi!j ¼ WðIi; Ci!jÞ; (6)

For simplicity, we adopt eIi to represent eIi!j in Fig. 1 since j
is set to t constantly in the whole process. Since, optical flow
estimation might be affected by rain, we optimize a pre-
trained optical flow network further using rain videos. The
optimization criterion is that, after the warping, the non-
rain regions of the aligned rain frames must be well corre-
sponded and be identical, expressed as:

LFlow ¼
Xt�1

i¼t�s

MNR
i!t

eIi!t � It

� ���� ���2
2

þ
Xtþs

i¼tþ1

MNR
i!t

eIi!t � It

� ���� ���2
2
; (7)

where t indexes the central frame, 2sþ 1 signifies the length
of the window size used by the deraining model. MNR

i!t

denotes the mask estimated by the warped versions of adja-
cent frames to the central rain frame and the central rain
frame It. The calculation of MNR

i!t will be introduced in the
following section.

4.2 Rmnet

Based on the temporal correlation, we adopt FRMNetð�Þ to repre-
sent the rain removal process of the aligned versions of suc-
cessive frames eFt;s, including the aligned versions of
adjacent frames as well as the current rain frame as the input:eFt;s ¼ eIðt�sÞ!t; . . .; eIðt�1Þ!t; It; eIðtþ1Þ!t; . . .; eIðtþsÞ!t

n o
:

Meanwhile, the deraining model is trained with temporal
consistency, which enforces the estimated frame to be consis-
tent with the estimated rain-free regions of all aligned adja-
cent rain frames:

B̂t ¼ FRMNet
eFI
t;s

� �
: (8)

The consistency loss function is defined as follows,

LFid-Con ¼
X

i¼ t�s;...;tþsf g=t

1

2 s
lp
fid

MNR
t!i

eBt!i;M
NR
t!iIi

� �
; (9)

eBt!i ¼ W B̂t; Ct!i

� �
; (10)

where MNR
t!i is the estimated mask denoting the non-rain

region of the adjacent rain frame Ii. The details of calculat-
ing MNR

t!i are discussed in the following sections. Function
lp
fid

ð�Þ is our proposed robust measure focusing on sparse
and large errors between the estimated rain-free frame and
the adjacent rain frames after alignment.

4.3 Rain Region Estimation

Since the frames adopted in our training phase are contami-
nated by rain streaks, as shown in Eqs. (9) and (7), we intend
to exclude the effect of this noise from the training guidance
obtained from the adjacent frames with the knowledge of
the estimated rain streaks. With adequate training time, we
can obtain B̂t. Subsequently, the masks of the non-rain
regions MNR

t!i and MNR
i!t are inferred from the forward and

backward warping operations at the current time-step t and
employed as soft masks, to indicate whether pixels are
occluded by rain streaks. In detail, MNR

t!i and MNR
i!t are

inferred as follows:

MNR
t!i ¼ exp �

hReLU Ii � eBt!i

� �2
� �

v

8>><>>:
9>>=>>;; 8i 6¼ t; (11)

MNR
i!t ¼ exp �

hReLU
eIi!t � It

� �� �2

v

8><>:
9>=>;; 8i 6¼ t; (12)

Fig. 1. The framework of our proposed augmented Self-Learning Deraining Network (SLDNet+). 1)Warpingmodule aligns the neighboring frames to
the central one and the central result to the adjacent frames. Successive modules utilize temporal correlation and consistency to create the mapping
to restore rain video frames into clean ones. 2) Rain Removal Network (RMNet) predicts the clean central frame with the adjacent rain video frames
to utilize temporal correlation. 3) RMNet is trained with the temporal consistency constraint, which persuades the generated central frame close to
the adjacent frames after the alignment, with a carefully designed loss supervised by the input rain frames. The red arrows and blue arrows denote
the information flow related to temporal correlation and consistency. Black, cyan, and magenta lines denote the data flow in our SLDNet+. The dif-
ferent colors of black, cyan, and magenta are used to distinguish the data flow related to the rain region estimation module.
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where v denotes the parameter that controls the shape of
the exponential function of Eqs. (11) and (12), and can act as
a threshold to decide what signals weighted by MNR

t!i and
MNR

i!t can pass through. hReLUð�Þ denotes the rectified linear
unit function to only get the positive values past, as it is
commonly observed that rain streaks are positive.

When looking into Eq. (9), one can observe that, if the
mask is adopted, the effectiveness of the loss heavily relies
on the motion estimation accuracy and whether the content
among different frames really corresponds. However, when
rain streaks are presented in video frames, the motion esti-
mation accuracy and perfect content alignment cannot be
guaranteed in most cases. The introduction of the rain
streak guidance can further augment the capacity of the loss
from the following two aspects.

First, as indicated in Eq. (9), we exclude the rain streaks’
influence from adjacent rain frames as training labels and
let the model learn useful priors from only rain-free regions.
Second, the estimated mask of the current frame also guides
our model to learn to manipulate only non-rain regions of
the current-time frame. Based on this, the fidelity loss that
leads to preserving the non-rain background structures in
the current frame is defined as:

LFid-Back ¼ lpfid MNR
t B̂t;M

NR
t It

� �
; (13)

MNR
t ¼ exp � hReLU It � B̂t

� �� �2
v

( )
: (14)

In summary, the emergence of the rain masks in the loss
regularizes the model training in handling the rain and
non-rain regions adaptively. For non-rain regions, it is
expected that the deraining model should not change any-
thing, preserving the information of input rain frames. For
rain regions, the generated output is constrained to be con-
sistent with the corresponding rain-free regions in the
warped rain frames.

4.4 Sparse and Robust Estimation

As discussed in Sec. 3.2, a fidelity metric of lfidð�Þ that pur-
sues sparser solutions leads to a more effective constraint,

focusing more on removing rain instead of enforcing the
consistency of misaligned backgrounds. The commonly
used norm for the fidelity metric takes the form:

lpfidðx; yÞ ¼
X

x� yj jp
� �1

p
; (15)

where p is usually set to 1 and 2, which corresponds to mean
absolute error (MAE) and mean squared error (MSE),
respectively. Based on the sparse representation theory [16],
if we can adopt the lp norm with a small p, our estimation
pays more attention to punishing on rain streak signals in
the estimated residue (the difference between our estimated
clean background and the constructed target) instead of the
temporally misaligned frames.

To achieve this goal in an end-to-end optimized frame-
work, we apply the reweighted lp norm [17] to encourage
sparsity in the estimated residue:

lpfidðx; yÞ ¼ v
X

x� yj j; (16)

v ¼ 1P
x� yj j1�pþ�

; (17)

where � is a small positive number to stabilize the numerical
calculation. Note that, v is a given tensor that is not
involved in the back-propagation optimization process. We
visualize our results that are constrained by different p in
Fig. 2. From the estimated rain streak maps and the differ-
ence between the clean background frame and the esti-
mated ones, we can observe that, reweighted lp norm leads
to less background information in the estimated rain streak
maps, and less background degradation.

Overall Loss Function. The whole training loss function
consists of all the aforementioned loss functions:

LAll ¼ LFlow þ �TLFid-Con þ �BLFid-Back; (18)

where the weighting parameters �T and �B balance the
importance of three terms. This loss will lead the network to
perform rain streak removal from rain videos.

Fig. 2. Visual results of a frame in a4 sequence of NTURain processed by Our SLDNet+ with different fidelity losses. Top panel: (a) rain frame; (b) rain
streak map; (c)-(e): the estimated rain streak maps constrained by l2, l1 and reweighted lp norms, respectively. Bottom panel: (a) clean background;
(b) zero map; (c)-(e): the difference between the clean background frame and the estimated frames constrained by l2, l1 and reweighted lp norms,
respectively. The results show that, reweighted lp norm leads to less background information in the estimated rain streak maps (red arrows in the top
panel), and less background degradation (red arrows in the bottom panel). Zoom-in for better visualization.
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4.5 Joint Optimization With Rain-Related Priors

Our framework performs video rain removal jointly with a
rain-related prior estimation by considering the following
factors:

� Optical flow provides the pixel-level motion infor-
mation for our frame warping and alignment. With
more accurate optical flows, the frames in eFt;s will
be well aligned, making FRMNetð�Þ work better, and
MNR

t!i and MNR
t more accurate. This will lead to fidel-

ity losses in Eqs. (13) and (9) more effective. More-
over, with more accurate background estimation,
MNR

i!t will be more accurate, then Eq. (7) will be more
effective, rendering more accurate flow estimation.
We can observe in the experimental section that,
when large motion is included, it is significantly ben-
eficial to optimize the optical flow estimation jointly
with rain streak removal.

� If we can obtain more accurate rain-streak removal
and optical flow estimation, the estimation of rain
regions via optimizing Eq. (11) will be better. Also, if
the estimation of the rain region is better, it can lead
to more accurate rain removal results via Eq. (13).

5 NON-LOCAL RAIN ACCUMULATION REMOVAL

FROM VIDEOS

Without the reliance on the synthetic training data, the
state-of-the-art rain-accumulation removal method (i.e.,
non-local image dehazing method [3]) first estimates the
accumulation-lines, then obtains the transmission map, and
finally performs accumulation removal. Unfortunately, the
method handles only a single image. If it is adopted for
video accumulation removal, the estimated accumulation-
lines among frames change drastically, and the accumula-
tion removal results inevitably flicker.

To address the issue, we propose a non-local rain accu-
mulation removal method from videos, which estimates
accumulation-lines, constructs the related constraints and
considers the temporal information. Our method includes
four steps: 1) estimating accumulation lines, 2) estimating
initial transmission, 3) transmission map refinement, 4) per-
forming rain accumulation removal.

5.1 Accumulation Line Estimation

The global atmospheric light, At ¼ A is estimated based on
the whole input frames. Pixels are projected onto the spheri-
cal coordinates and clustered based on the angles of pixels.
The estimated rain streak-free result Ht :¼ It �R0

t is nor-
malized by

Ha
t ¼ Ht �At ¼ It �R0

t �At;

¼ at Bt �Atð Þ: (19)

All the normalized frames Ha ¼ fHa
t g are then transformed

into the spherical coordinates:

Ha ¼ rðpÞ; uðpÞ;fðpÞ½ �; (20)

where p is the pixel location at the given time-step (spatial
and temporal locations), rðpÞ is the distance to the origin.
uðpÞ and fðpÞ are the longitude and latitude, respectively.

Subsequently, the accumulation-lines are formed by group-
ing pixels based on ½uðpÞ;fðpÞ�.

5.2 Estimating Initial Transmission

With the clustered pixels as the accumulation-lines, we then
estimate the transmission of each pixel. The basic idea is
that, there are clean pixels in each accumulation line. That is
to say, for those clean pixels, they are never interfered by
haze and all related signal in the background Bt directly
transmits to the haze image It, namely the transmission
coefficient a ¼ 1 or at ¼ 1 in Eq. (4). Then, the transmission
can be estimated based on the percentage of radius. The
maximal radius of each accumulation-line r̂maxðpÞ is esti-
mated using:

r̂maxðpÞ ¼ max
p2h

rðpÞf g; (21)

where h is a given accumulation line. The transmission is
obtained as follows:

eaðpÞ ¼ rðpÞ=r̂max: (22)

Note that, the time-step t is a part of indices in p.

5.3 Transmission Map Refinement

The transmission estimation in Eq. (22) is pixel-wise and
does not consider the spatial and temporal smoothness.
Then, the estimated transmission map is refined with the
spatial and temporal smoothness coherency:

X
p

âðpÞ � eaLBðpÞ½ �2
s2ðpÞ þ �r

X
p

X
q2Np

âðpÞ � âðqÞ½ �2
IðpÞ � IðqÞk k2 ; (23)

eaLBðpÞ ¼ max eaðpÞ; 1� min
c2 R;G;Bf g

IcðpÞ=Acf g
	 


: (24)

where the parameter �r controls the trade-off between spa-
tial and temporal smoothness. Np is the four nearest neigh-
bors of p in the spatial space and sðpÞ denotes the standard
deviation of eaLB, which is inferred based on each accumula-
tion-line.

5.4 Rain Accumulation Removal

Having obtained eaLBðpÞ, the estimation of transmission, the
rain accumulation removal results can be computed as fol-
lows:

B̂tðp�Þ ¼ Ht p
�ð Þ � 1� ât p

�ð Þ½ �Af g=ât p
�ð Þ; (25)

where p� indexes only the spatial locations and p ¼ fp�; tg.
Fig. 3 shows the accumulation removal results by a non-

local image dehazing method [3] in comparison with our
proposed method. The input rain-streaks frames are
derained using our proposed method. As can be observed,
both accumulation removal methods can significantly
improve the visibility and unveil the background details.
Our method, however, leads to more temporally continuous
results than the single image-based method, particularly in
the regions denoted by red arrows in (a)-(c) and the regions
near trees in (d)-(f) of Fig. 3.
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6 EXPERIMENTAL RESULTS

6.1 Datasets

Our method is compared with several different kinds of
state-of-the-art methods on NTURain [10]. The dataset
includes two sub-groups: one taken from fast moving
onboard cameras, the other taken in the slow moving sce-
nario from an unstable and panning camera. There are also
other widely used video rain datasets, e.g. RainSynLight25
and RainSynComplex25 [38]. However, each video clip in
these datasets includes too few video frames (only 7-15
frames) that we cannot conduct self-training. Thus, we do
not compare different methods on these datasets. We also
conduct a comparison on real rain videos widely used in
the previous works and those from Youtube as well as our
own rain data. We will provide more results and analysis
on our project website.1

6.2 Implementation Details

NTURain dataset and our collected real rain videos are
adopted for evaluation. NTURain dataset contains 25 paired
training videos and 8 testing videos. However, in the quan-
titative evaluation, the training of our method does not rely
on the training set at all, and utilizes only the rain frames in
its testing set, as our method only needs to self-learn. For
our qualitative evaluation, the collected real rain videos
with only rain frames but without clean frames are utilized.
The proposed deraining networks are trained with Adam
optimizer. The learning rate is set to 1e�4. The optical flow
module in our network is initialized with the existing pre-
trained model, which is further finetuned on our input by
setting the learning rate to 1e�7.

The training batches whose batch size is 8 are sampled
from our training videos and cropped into a form of
64�64�5 cubics. The PSNR and SSIM results are calculated
based on the average of all frames’ results for the given
dataset. As for the detailed configuration, we produce the
results of all compared methods following the authors’

Fig. 3. Visual comparisons of rain accumulation removal methods on two real sequences with heavy accumulation. The input rain frames are pre-
processed by the above-mentioned self-learned rain streak removal method. Our proposed non-local video rain accumulation method leads to more
temporally continuous results than the single image-based method, especially in the regions denoted by red arrows in (a)-(c) and the regions near
trees in (d)-(f). From top to bottom: three successive video frames on two real rain videos. Zoom-in for better visualization.

TABLE 1
PSNR Results Among Different Rain Streak Removal Methods on NTURain

a1-b4 Denote eight testing sequences in nturain. best results are denoted in red and the second best results are denoted in blue.

1. https://github.com/flyywh/CVPR-2020-Self-Rain-Removal-
Journal
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originally provided settings and codes: J4RNet is trained
with their own datasets, PReNet and URML are trained
with Rain100H, and others are traditional optimization-
based methods not relying on the training data.

We consider that not retraining previous works and net-
works using NTURain’s training set is also fair, since: (1)
during the deployment phase, practically, most of the time
we know nothing about the video domain, (2) our method

is not trained on NTURain’s training set also. Furthermore,
we have SpacCNN [10] and S2VD [67] trained on NTURain,
which has already shown the state-of-the-art performances
of fully-supervised and semi-supervised categories.

6.3 Compared Methods

The proposed method is compared with state-of-the-art
methods: Directional Global Sparse Model (UGSM) [12],

TABLE 2
SSIM Results Among Different Rain Streak Removal Methods on NTURain

a1-b4 Denote Eight Testing Sequences inNTURain. Best Results are Denoted in red and the Second Best Results are Denoted in blue.

Fig. 4. Visual comparisons of different deraining methods on successive two frames in ra4 sequence of NTURain. The remaining rain streaks and lost
details are denoted with blue and red arrows, respectively. Zoom-in for better visualization.
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Uncertainty guided Multi-scale Residual Learning
(UMRL) [65], FastDeRain [29], Progressive Recurrent
Network (PReNet) [43], Stochastic Encoding (SE) [57], Dis-
criminatively Intrinsic Priors (DIP) [30], Joint Recurrent Rain
Removal and Reconstruction Network (J4RNet) [38], Super-
Pixel Alignment and Compensation CNN (SpacCNN) [10],
Semi-Supervised Video Deraining (S2VD) [67], SuperPixel
Alignment and Compensation CNN (SpacCNN) [10], Multi-
Scale Convolutional Sparse Coding (MS-CSC) [33]. UGSM,
UMRL, and PReNet are single-image rain removal
approaches that provide state-of-the-art performance in the
single-image rain removal task. DIP, FastDerain, SE, MS-
CSC, J4RNet, SpacCNN, and are video derainig methods.
UMRL, PReNet, J4RNet, SpacCNN, S2VD are deep-learning
based methods. The former four are fully-supervised meth-
ods and S2VD is a semi-supervisedmethod that utilizes both
paired synthetic and unpaired real training videos. For all
compared methods, the evaluation codes are provided
kindly by the authors. We use Peak Signal-to-Noise
Ratio (PSNR) [27] and Structure Similarity Index (SSIM) [55]
as the comparison measures in the quantitative evaluation.
Following the measure calculation in previous works, the
results are only evaluated in the luminance channel, as the
human visual system pays more attention to luminance than
chrominance channels.

6.4 Quantitative Evaluation

We first compare the performance of different methods
quantitatively in Tables 1 and 2. Comparing different meth-
ods, including both single-image methods and video rain

removal methods, we reach several observations. First, the
results of our methods are consistently better than previous
works, including both data-driven methods or low-rank
based ones, which demonstrates the rationality of our meth-
odology. Second, in contrast to the state-of-the-art single-
image rain removal method, PReNet, URML, and UGSM,
we achieve more than 7 dB and 0.0270 gain in PSNR and
SSIM, respectively. The results demonstrate the importance
and necessity of adopting temporal modeling besides the
knowledge from massive data. Third, our method outper-
forms SpacCNN significantly, the state-of-the-art fully-
supervised learning video rain removal method, with a gain
of 5.2 dB 0.0275 in PSNR and SSIM, respectively. Fourth,
note that, S2VD is the state-of-the-art deraining method that
utilizes both paired synthetic data and unpaired real train-
ing data. Surprisingly, our method achieves even better per-
formance, which shows the intrinsic temporal redundancy
has provided strong enough guidance for video deraining.

6.5 Qualitative Evaluation

Qualitatively, we also compare the visual results of different
methods. One group of results on NTURain and four groups
of results on real videos are presented in Figs. 4, 5, 6, 7, and
8. The testing videos contain various kinds of rain streaks in
intensity, density, and scale. The results in Figs. 4, 5, 6, and
7 are processed by our self-learned rain streak removal
method, while Fig. 8 is processed by our self-learned rain
streak and accumulation removal methods jointly. Our
results look more impressive. Fewer rain streaks remain
while more abundant details with less blurring and lost

Fig. 5. Visual comparisons of different deraining methods on two successive frames in a real rain video sequence. The remaining rain streaks and lost
details are denoted with blue and red arrows, respectively. Zoom-in for better visualization.
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details are observed. More visual comparisons will be pro-
vided on our project page1.

6.6 Ablation Study of Losses in Model Training

To evaluate the effectiveness of loss selection, an ablation
study on the training losses is shown in Tables 5 and 6. It is
observed that, L1 loss leads to much superior results than
MSE loss, which is used in [63], and our reweighted L1 loss
achieves better results than L1 loss in PSNR and SSIM. The
results confirm the merits of adopting reweighted L1 loss in
our model training. We also provide the visual comparisons
of our methods trained with different losses on two real
rain sequences in Fig. 9. It is observed that, a sparser loss
leads to better background reconstruction.

6.7 Ablation Study of Network Architectures

To evaluate the effectiveness of whether the two-stage net-
work design [63] and the one-stage network is better, an abla-
tion study on the network architecture is shown in Tables 3
and 4. It is observed that, with our new architecture and set-
tings, single-stage results (only EHNet in the two-stage struc-
ture) are even better than the two-stage ones. Note that,
in [63], the rain mask guidance is generated from the Pre-
dNet and cannot be imposed on the training of single-stage
EHNet. Comparatively, in our method, the rain mask guid-
ance is generated based on the final derained results, and
therefore can be imposed on both kinds of architectures.
With the support of the ablation study’s results, we select the
one-stage network as our new version, which owns about
only half of the parameters compared to [63].

Fig. 6. Visual comparisons of different deraining methods on two successive frames in a real rain video sequence. The remaining rain streaks and lost
details are denoted with blue arrows and red arrows/boxes, respectively. Zoom-in for better visualization.

1388 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 3, MARCH 2024

Authorized licensed use limited to: Peking University. Downloaded on March 17,2024 at 06:35:49 UTC from IEEE Xplore.  Restrictions apply. 



6.8 Ablation Study of Rain-Related Priors

To confirm the merits of rain-related priors, several versions
of our deraining network with and without rain priors, i.e.
optical flow and rain region mask, are compared. The results
are presented in Tables 7 and 8. Comparing SLDNet+v2 and
SLDNet+full, we can observe that, it is very beneficial to intro-
duce the rain region mask guidance, as the guidance lets the
network knowwhich regions aremore reliable ground truths,
which equivalently to refine the noisy labels in our problem.

Comparing SLDNet+v1 and SLDNet+full, it is observed
that, in the static scenes (b1-b4), the versions with the fine-
tuned optical flow leads to degraded performance. Compar-
atively, in the dynamic scenes (a1-a4), optical flow finetun-
ing leads to a large performance leap. When there are no
large motions, finetuning the already accurate enough opti-
cal flow model based on our input, degraded by rain
streaks, inevitably leads to the degeneration of the flow
model. Comparatively, when large motions are included,
the gain brought by the model finetuning can surpass the
loss caused by finetuning on rain contaminated input. From
the results in Fig. 10, we can observe that, SLD-Net-v1 and
SLD-Net-v2 both generate visual artifacts in the derained
results, while SLD-Net-full provides more visually pleasing
results, which shows the rationality of our model design.

6.9 Analysis on Parameters of Rain Mask Guidance

We provide the analysis on the parameter selection of rain
masks in Tables 9 and 10 on a1 and b1 sequences, one in a
static scene and the other in a dynamic scene. In general, it
is observed, v ¼ 0:1 is a satisfying option, offering competi-
tive or superior performance in PSNR and SSIM than other
options.

6.10 Analysis on Parameters of Sparsity-Driven
Loss

We provide the analysis on the selection of the reweighted
parameters in sparsity-driven losses in Tables 11 and 12 on
a1 and b1 sequences, one in a static scene and the other in a
dynamic scene. From the results, we find that, for static
scenes, lp with a smaller p leads to improved performance.
While in the dynamic scenes, lp with p < 0:5 leads to a
rapid performance drop. In general, l0:5 provides generally
good results for both cases.

6.11 Visual Results of Rain Region Estimation

We also compare the visual results of rain region estimation
on the b1 sequence in NTURain dataset in Fig. 11. It is
observed that, the rain/non-rain regions predicted by our

Fig. 7. Visual comparisons of different deraining methods on two successive frames in a real rain video sequence. The remaining rain streaks and lost
details are denoted by blue arrows and red boxes, respectively. Zoom-in for better visualization.
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method successfully locate the rain streak regions and play
a role to weaken the effects of these regions.

6.12 Visualization of Extracted Features

We also visualize the extracted features of our SLDNet+ and
a fully supervised network, which has the same structure as
SLDNet+ but trained on the training set of NTURain in a
fully supervised way. The results are generated on b1
sequence in NTURain dataset. The feature maps are ordered
by their variations and the feature maps with larger varia-
tions rank first. From Fig. 12, it is observed that, the
extracted features by SLDNet+ are sparser but more diverse

than the fully supervised one. The first several feature maps
obtained from the fully supervised method include more
information related to the background and look very simi-
lar. Comparatively, our corresponding features generated
by SLDNet+ capture more distinguished information.

6.13 Complexity Comparison

In Table 13, we compare the runtime of several SOTA meth-
ods. The testing frame’s resolution is 832� 512. The pro-
posed rain streak removal method (Ours-S) and J4RNet are
implemented in Pytorch. DetailNet is implemented in Ten-
sorflow. Other SOTA methods, including our accumulation

Fig. 8. Visual comparisons of different deraining methods on two successive frames in a real rain video sequence. Our results are produced by our
self-learned rain streak and accumulation removal methods. Results of other deraining methods are post-processed by ST-MRF [6], the state-of-the-
art video dehazing method. The remaining rain streaks and lost details are denoted by blue arrows and red arrows, respectively. Zoom-in for better
visualization.
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removal method (Ours-A), are implemented in MATLAB.
SpacCNN is built based on MatConvNet.2 JORDER is built
on the Caffe’s Matlab wrapper.3 TCLRM, SE, and our accu-
mulation removal method are built based on CPU while
other methods are GPU-based methods. The SpacCNN is
evaluated on NVIDIA Geforce MX150 as it needs a Win-
dows operation system in the PC while other GPU-based
methods are evaluated on GeForce GTX 1080Ti in the clus-
ter. Generally, the running speed of the proposed method is
slower than other more efficient methods, such as FastDeR-
ain and JORDER.

Fig. 9. Visual comparisons of our methods with different losses on two
real rain sequences. The lost details are denoted by blue arrows. Top
panel: rain input frame. The second panel: results by MSE loss. The
third panel: results by L1 loss. The fourth panel: results by our
reweighted loss. Zoom-in for better visualization.

TABLE 5
Ablation Study for Losses Used in Our Work in PSRN

Network a1 a2 a3 a4

MSE Loss 34.72 34.68 34.17 36.45
L1 Loss 36.58 35.74 35.93 39.83
Reweighted L1 Loss 38.10 36.00 36.67 40.44

Network b1 b2 b3 b4

MSE Loss 33.73 35.32 34.85 34.89
L1 Loss 36.41 38.34 38.96 37.80
Reweighted L1 Loss 37.43 38.92 40.38 38.96

a1-b4 Denote eight testing sequences in nturain. best results are denoted in
bold.

TABLE 6
Ablation Study for Losses Used in Our Work in SSIM

Network a1 a2 a3 a4

MSE Loss 0.9582 0.9601 0.9512 0.9715
L1 Loss 0.9698 0.9668 0.9638 0.9819
Reweighted L1 Loss 0.9750 0.9678 0.9681 0.9837

Network b1 b2 b3 b4

MSE Loss 0.9516 0.9588 0.9649 0.9558
L1 Loss 0.9663 0.9755 0.9774 0.9701
Reweighted L1 Loss 0.9704 0.9790 0.9814 0.9750

a1-b4 Denote eight testing sequences in nturain. best results are denoted in
bold.

TABLE 3
Ablation Study for the One-Stage or Two-Stage Network Archi-

tecture in PSNR

Dataset a1 a2 a3 a4

Two-Stage (CVPR-2020) 37.08 36.49 36.01 40.04
Ours 38.10 36.00 36.67 40.44

Dataset b1 b2 b3 b4

Two-Stage (CVPR-2020) 36.67 38.90 39.88 38.37
Ours 37.43 38.92 40.38 38.96

a1-b4 Denote eight testing sequences in nturain. the two-stage network [63]
in cvpr-2020 is retrained based on our new settings, e.g. reweighed l1 loss and
the new threshold to produce the masks. best results are denoted in bold.

TABLE 4
Ablation Study for the One-Stage or Two-Stage Network Archi-

tecture in SSIM

Dataset a1 a2 a3 a4

Two-Stage (CVPR-2020) 0.9694 0.9703 0.9615 0.9824
Ours 0.9750 0.9678 0.9681 0.9837

Dataset b1 b2 b3 b4

Two-Stage (CVPR-2020) 0.9690 0.9786 0.9805 0.9715
Ours 0.9704 0.9790 0.9814 0.9750

a1-b4 Denote eight testing sequences in nturain. the two-stage net-
work [63] in cvpr-2020 is retrained based on our new settings, e.g.
reweighed l1 loss and the new threshold to produce the masks. best results
are denoted in bold.

TABLE 7
Ablation Study for Rain-Related Priors Used in Our Work in

PSNR

Network a1 a2 a3 a4

SLDNet-v1 (wo OFF, w RRG) 38.29 36.10 37.16 40.52
SLDNet-v2 (w OFF, wo RRG) 34.02 34.15 33.36 38.12
SLDNet-full (w OFF, w RRG) 38.10 36.00 36.67 40.44

Network b1 b2 b3 b4

SLDNet-v1 (wo OFF, w RRG) 36.95 38.31 39.72 38.77
SLDNet-v2 (w OFF, wo RRG) 33.83 36.69 37.26 35.95
SLDNet-full (w OFF, w RRG) 37.43 38.92 40.38 38.96

a1-b4 Denote eight testing sequences in nturain. sldnet-v1: without optical
flow finetuning (off), rain region guidance (rrg). sldnet-v2: with off but with-
out rrg. sldnet-full: with off, rrg. best results are denoted in bold.

2. http://www.vlfeat.org/matconvnet/
3. http://caffe.berkeleyvision.org/
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However, our methods can be further accelerated by the
following ways to make it more real-time application-
driven:

� For our rain accumulation methods, we down-sam-
ple the frame resolution when estimating and the air
light (1/16) and haze lines (1/8) that are derived into
transmission estimation. After the operation, our
accumulation removal method (Ours-A-L) offers
almost the same visual results, as shown in Fig. 14,
but only needs less than 1/10 original running time
(0.1540 vs. 2.3234).

� Our rain accumulation methods can be further accel-
erated by GPU computation.

� For our rain streak removal methods, some more
lightweight deformable convolutions might replace
the time-consuming optical flow operations. Further-
more, some acceleration techniques, such as model
compression and distillation can be included to fur-
ther reduce the running time.

6.14 Comparisons to Using Traditional Optical Flow

In Table 14, we also compare our method with the version
equipped with the traditional optical flow, i.e. Gunner

TABLE 9
Analysis of the Parameter Selection of Rain Masks in PSRN

v 1 0.1 0.01 0.001 0.0001

a1 37.71 38.10 37.77 33.92 22.60
b1 37.30 37.43 36.95 31.05 18.47

a1 and b1 Denote two testing sequences in nturain. best results are denoted in
bold.

TABLE 10
Analysis of the Parameter Selection of Rain Masks in SSIM

v 1 0.1 0.01 0.001 0.0001

a1 0.9741 0.9750 0.9752 0.9711 0.8986
b1 0.9698 0.9704 0.9700 0.9535 0.7507

a1 and b1 Denote two testing sequences in nturain. best results are denoted in
bold.

TABLE 11
Analysis of the Selection of the Reweighted Parameters in Spar-

sity-Driven Losses in PSNR

p l1 l0:9 l0:8 l0:7 l0:6

a1 36.58 36.96 37.19 37.44 37.55
b1 36.41 36.88 37.11 36.59 37.45

p l0:5 l0:4 l0:3 l0:2 -

a1 38.10 38.28 38.40 38.49 -
b1 37.43 36.85 36.69 36.85 -

a1 and b1 Denote two testing sequences in nturain. best results are denoted in
bold.

TABLE 12
Analysis of the Selection of the Reweighted Parameters in Spar-

sity-Driven Losses in SSIM

p l1 l0:9 l0:8 l0:7 l0:6

a1 0.9698 0.9712 0.9719 0.9728 0.9736
b1 0.9541 0.9673 0.9684 0.9687 0.9695

p l0:5 l0:4 l0:3 l0:2 -

a1 0.9750 0.9757 0.9763 0.9771 -
b1 0.9704 0.9696 0.9692 0.9684 -

a1 and b1 Denote two testing sequences in nturain. best results are denoted in
bold.

TABLE 8
Ablation Study for Rain-Related Priors Used in Our Work in

SSIM

Network a1 a2 a3 a4

SLDNet-v1 (wo OFF, w RRG) 0.9762 0.9693 0.9701 0.9839
SLDNet-v2 (w OFF, wo RRG) 0.9548 0.9582 0.9451 0.9761
SLDNet-full (w OFF, w RRG) 0.9750 0.9678 0.9681 0.9837

Network b1 b2 b3 b4

SLDNet-v1 (wo OFF, w RRG) 0.9703 0.9798 0.9820 0.9753
SLDNet-v2 (w OFF, wo RRG) 0.9541 0.9735 0.9701 0.9600
SLDNet-full (w OFF, w RRG) 0.9704 0.9790 0.9814 0.9750

a1-b4 Denote eight testing sequences in nturain. sldnet-v1: without optical
flow finetuning (off), rain region guidance (rrg). sldnet-v2: with off but with-
out rrg. sldnet-full: with off, rrg. best results are denoted in bold.

Fig. 10. Visual comparisons of our methods with and without using rain-
related priors on rb2 and rb3 sequences in NTURain dataset. The lost
details are denoted by red arrows. Top panel: rain input frame. The sec-
ond panel: results by SLDNet-full. The third panel: results by SLDNet-
v2. The fourth panel: results by SLDNet-v1. Zoom-in for better
visualization.
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Farneback’s algorithm [18] implemented in Python. When
training the version with Gunner Farneback’s algorithm,
the flow loss in Eq. (7) is not adopted as the algorithm is not
trainable. From the results, it is observed that, our method
achieves overall slightly better performance than the

version using traditional Gunner Farneback optical estima-
tion. It is surprising that, the version with Gunner
Farneback’s algorithm wins in PSNR on b2. However, for
SSIM, our method still achieves superior performance to the
traditional one.

Fig. 11. visual results of rain region estimation on b1 sequence in NTURain dataset. Top panel: rain input frame. Middle panel: rain masks used to
train the optical flow network in Eq. (7). Bottom panel: rain masks used to train our deraining network in Eqs. (9) and (13). Yellow color denotes the
pixel value is close to 1 while blue color denotes the pixel value is close to 0. Zoom-in for better visualization.

Fig. 12. Visual comparisons of the extracted features of our SLDNet+ and a fully supervised network on b1 sequence in NTURain dataset. The fea-
ture maps are ordered by their variations. Zoom-in for better visualization.

TABLE 13
Running Time Comparison (In Sec.) of Different Rain Removal Methods on a Video With the Spatial Resolution 832� 512

Methods JORDER DetailNet FastDeRain SpacCNN Ours-S -

Time 0.6329 1.4698 0.3962 9.5075 2.0270 -
Methods MS-CSC SE J4RNet TCLRM Ours-A Ours-A-L
Time 15.7957 19.8516 0.8401 192.7007 2.3234 0.1540
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6.15 Evaluation on the Effect of Existence of the
Previous Stage on the Later One

We evaluate the effect of the existence of the previous stage
on the later one in Fig. 13. It is observed that, except for the
remaining rain streaks, the previous rain streak has little
impact on the second stage – rain accumulation removal.
When the rain streak removal algorithm is not employed at
the first stage, our method and the single image-based one
can remove accumulation while the single image-based one
suffers from more severe frame flicker, as denoted by the
red arrows in Fig. 13.

7 CONCLUSION

In this paper, beyond our previous explorations on self-super-
vised video rain streak removal, we build an augmented one-

stage Self-Learned Deraining Network (SLDNet+) to make
full use of both the temporal correlation and consistency to
construct the restoration mapping from rain frames to clean
ones. With the temporal consistency of the generated frames
in our mind, SLDNet+ enforces the generated frame to get
close to the adjacent frames by using alignment. The training
loss adopts a reweighted L1 form, which helps the estimation
of the degraded labels more robustly. The injection of the
rain-related priors makes the network learn better, e.g. only
manipulating the rain region and reducing the role of rain
streaks in the adjacent frames as the label. Furthermore, a
novel non-local video rain accumulation removal method is
constructed to remove the rain accumulation, and thus
improve the visibility of our resultswhen rain is heavy. Exten-
sive experiments show the effectiveness of our approach,
which provides better results in both quantitative and qualita-
tive evaluations.
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